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SUMMARY 

The flow of a uniform stream past an impermeable vertical surface embedded in a saturated porous medium 
and which is supplying heat to the porous medium at a constant rate is considered. The cases when the flow 
and the buoyancy forces are in the same direction and when they are in opposite direction are discussed. In 
the former case, the flow develops from mainly forced convection near the leading edge to mainly free 
convection far downstream. Series solutions are derived in both cases and a numerical solution of the 
equations is used to describe the flow in the intermediate region. In the latter case, the numerical solution 
indicates that the flow separates downstream of the leading edge and the nature of the solution near this 
separation point is discussed. 

Nomenclature 

g acceleration due to gravity 

K permeability of  the porous medium 

k thermal conductivity of  the saturated porous medium 

q local heat transfer rate (constant) 

T temperature 

To temperature of  the ambient fluid 

Tw constant wall temperature (isothermal wall problem) 

T s excess surface temperature (non-dimensional) 

u Darcy's law velocity in the x-direction 

Uo free stream velocity in the x-direction 

Us velocity on the surface (non-dimensional) 

v Darcy's law velocity in they-direction 

x vertical co-ordinate 

y horizontal co-ordinate 

a equivalent thermal diffusivity 

/3 coefficient of thermal expansion 

e non-dimensional parameter = pog~l~(Tw - To)/laUo 

/l viscosity of  convective fluid 

Po density of  convective fluid 
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1. Introduction 

The problem of heat transfer in flows in saturated porous media has been the subject of several 
recent papers. The free convection boundary-layer flow about a vertical flat surface has been 

treated by Cheng and Minkowycz [ 1 ], about a vertical cylinder by Minkowycz and Cheng [2], 
about a horizontal surface by Cheng and Chang [3]. The effects of lateral mass flux through the 
boundary have been discussed by Cheng [4] and Merkin [5]. 

In this paper we are concerned with the mixed convection boundary-layer flow about a 

vertical flat impermeable surface embedded in a saturated porous medium. The case when the 

surface is held at a constant temperature different to that of the ambient fluid has been 
discussed previously by Cheng [6]. In fact, he considered the wedge geometry and looked for 
the possible surface temperature distributions for which the governing equations have a similari- 

ty solution, of which the isothermal vertical flat surface is an example. (When the surface is 

horizontal the solution is essentially different to that given in [6] and has been treated by 
Cheng [7]). This problem was used by Cheng [6] to model flows in geothermal reservoirs where 
the withdrawal or re-injection of fluid can set up applied pressure gradients which cause the 
geothermal fluid in the reservoir to flow over impermeable surfaces. 

The similarity equations derived in [6] involve the non-dimensional parameter e = pogfg(,(Tw 

- To) //a Uo which describes the relative importance of natural to forced convection. Now 
there are essentially two configurations to consider. Firstly, the buoyancy forces can be in the 

same direction as the flow and thus aid the flow development, or they can be in the opposite 
direction to the flow and so oppose it. In the aiding case we have e > 0 and solutions are 
possible for all values of e and are described fully in [6]. However, for e < 0 we have the 
opposing case and a solution is possible only for a limited range of e, namely 0/> e />-1 .354.  
Furthermore, for -1  > e > 1.354 the solution is non-unique and we obtain two values of the 
wall heat transfer for a given value of e. Solutions are given in [6] only for e in the range -1  < e 

< 0 .  
The main purpose of this paper is to consider the analogous mixed convection problem, 

whereby, instead of the surface being held at a constant temperature, we assume that heat is 
supplied to fluid at the wall at a constant rate. It is not immediately obvious in the applications 
discussed above whether the isothermal or constant heat flux boundary condition is the more 

realistic and so it would seem necessary for both cases to be considered. Unlike the isothermal 
wall case, a similarity solution of the governing equations is not now possible and to solve the 
present problem we follow the methods used by Wilks [8, 9] to solve corresponding mixed 

convection boundary-layer flow on a vertical plate with uniform heat flux. A series expansion 

in powers of x (x measures distance along the wall) is first obtained to describe the flow near 
the leading edge. This expansion is then extended by a numerical solution of the boundary- 
layer equations, which starts at x = 0 and in the aiding case proceeds along the wall until the 
asymptotic solution (i.e. for large x) is attained to the required accuracy. In the opposing case 
the buoyancy forces retard the fluid in the boundary layer and we would expect the flow to 
separate at some point Xs downstream of the leading edge. This is found to be the case and the 
numerical solution cannot be continued past x s. Near xs the solution appears to be approaching 
a singularity and the nature of this singularity is discussed where it is found that the (non- 
dimensional) surface temperature T s behaves like 1 + A(xs  - x)~ for some constant A. 
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2. Equations 

We consider the problem of a semi-infinite vertical impermeable flat surface embedded in a 

saturated porous medium over which is flowing a uniform stream Uo, and which supplies heat 
to the porous medium at a constant rate q. We assume that the convective fluid and the porous 

medium are isotropic, in thermodynamic equilibrium and have constant physical properties and 

that the Boussinesq approximation is valid. The flow is assumed to be described adequately by 
Darcy's law and if we make the further assumption of large Rayleigh number, the usual 

boundary-layer simplifications can be made, Wooding [10]. Here there is an outer region with 

velocity u = Uo, v = 0 and pressure gradient ~p/~x = -Uot~/K, and next to the wall there is a 

boundary layer in which 3p/3y = 0. This leads to the following boundary-layer equations, 

g ~ K P O ( T  
u = V o _ + - -  - r 0 ) ,  (1) // 

+ -- o, (2) 
o2/ 

~T 3T ~2T 
u ~ x  +v ~y  = a  - -  (3) ay 2 

where K is the permeability of the porous medium, a the equivalent thermal diffusivity and P0 

and To the density and temperature (respectively) of the ambient fluid, x and y are co-ordi- 

nates measuring distance along and normal to the vertical surface respectively, and u and v are 

the velocities as given by Darcy's law in the x and y directions. 

If  we take q to be the positive throughout, then, when the flow is vertically upwards, we have 

the aiding case and so require the upper sign in equation (1), whereas when the flow is vertically 
downwards we have the opposing case and the lower sign is required. This situation would be 
reversed if q were negative. 

The boundary conditions are 

OT q 
v = 0 ,  ~y - k o n y = 0 ;  (4) 

u -+ U0, T ~  To asy -+ oo. (5) 

It is appropriate at this stage to consider the similarity solution obtained by Cheng [6] for the 

constant wall temperature boundary condition. Here (4) is replaced by 

v = O, T = Tw on y = 0 (6) 

where, for the the sake of argument, T w can be taken as positive. Equations1(1 ) (2) (3) and (6) 
possess a similarity solution which is obtained by writing ~ = (2 a Uo x)  2 F(~s), T -  To --- 

1 

(Tw - To )G(rls) where r/s = {Uo/(2ax)}ry, and ff is the stream function defined from (2) in the 
usual way. Equation (1)gives 
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F '  = 1 + eG (7) 

where the non-dimentional parameter e = + g~Kpo(Tw - To)/OaUo) represents the relative im- 
portance of free to forced convection with e > 0 in the aiding case and e < 0 in the opposing 

case. Using (7), equation (3) becomes 

F'" + FF" = 0 (8) 

with boundary conditions 

F(0)=0, F'(0)=l+e, F'~lasr~ s ~ o o  (9) 

where primes denote differentiation with respect to r/s. 

For e > 0 solutions of equation (8) can 0e obtained for all e, and these are given in [6]. 
However, for e < 0, (8) has solutions only in the range -1 .354 ~< e ~< 0 and for e in the range 

-1 .354  < e < -1  we find that the solution is not unique, there being two solutions FI and F2 

for a given e. This can be seen from Figure 1 where F "  (0) is plotted against e. When e = - 1 ,  (9) 

gives F '  (0) = 0 and we have the well-known Blasius Solution (wi thF" (0) = 0.46960). For e < 

-1  one set of solutions F1 continues from this solution. The other set of solutions F 2 have 

F~(0) < F~'(0) for a given e and are such that F~'(0) ~ 0 as e -~, - I  (though there is no solution 

to (8) with F ' ( 0 ) = F " ( 0 )  = 0). In Table 1 the values of F~'(0) and g~'(0) are given for e in the 
range -1 .354 ~< e ~< - 1 .  So from this it would appear that the solution in [6] is relevant to the 

physical problem only for e/> -1 .  

I I I I I 

-1"4  - 1 ' 2  - 1 ' 0  - 0 ' 8  - 0 " 6  - 0 4  - 0 2  

Figure 1. Graph ofF"(0) against e for e < 0. 
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TABLE 1 

The values ofF 1" (0) and F 2" (0) 

F I  - e (0) F2"(0) 

-1.00 
-1.05 
-1.10 
-1.15 
-1.20 
-1.25 
-1.30 
-1.35 
-1.354 

0.46960 
0.46758 
0.46105 
0.44907 
0.43015 
0.40152 
0.35664 
0.25758 
0.22428 

0.00004 
0.00194 
0.00866 
0.02219 
0.04539 
0.08497 
0.17856 
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3. Numerical solution 

From (2) we can define a stream function ff so that u = Off~By, v = -8~/8x  then make the 

equations non-dimensional by writing 

( UoVk ] 
~-- ~ /  *(x, r3, 

c t ( P o g [ 3 k q )  2 
and 

Uola 
T - T o -  pog[JK O(X']O' 

Y= ( PogKq 
UUok ) y 

Equation (1) gives O~/Sy = 1 + 0, and using this, equation (3) becomes 

03q~ 8~ 02~ 8~ 02q~ 
8Ya - 8Y 8XaY 8X 8Y2 (10) 

with boundary conditions 

82~ 8q~ 
• =0 ,  - ¥ 1 o n Y = O ,  - ~  ~ 1 as Y~oo. (11) a y  2 

(Where the upper sign is taken throughout for the aiding case and the lower sign for the 
opposing case). 

Near the leading edge there is little opportunity for heat from the wall to be taken into the 

fluid and so the buoyancy forces have only a small effect and the heat transfer will be predomi- 

nately by forced convection. So a solution valid for small values of X is obtained by perturbing 

about the forced convection solution, namely xt, = y.  When this is done it turns out that it is 
1 1 

more natural to use r /= i Y/Xr rather than Y as an independent variable. This suggests writing 
xI, = y +_ 4Xf(X, 7) to put (I0)  into a form more appropriate for solving f romX = 0. Equation 
(10) then becomes 

Journal of Engineering Math., Vol. 14 (1980) 301-313 



306 J.H. Merkin 

33----f +27 32--f-f-2 Of" +4X~ { ( a f ]  2 32f } 
Or/3 072 ~ = - On ] - 2f - -  (12) 072 

ov + 8x ( v v 
+ 4 X  ~ _  On 373X 3 X  0 7 2 ]  

with boundary conditions 

af f = 0 ,  O2f - - I o n 7 = 0 ,  - ~  -+0as7-+oo. (13) 
3772 

f ( X , n )  can be expanded in the form 

f ( x , 7 )  = fo (7) +- x }  f ,  (7) + xf~ (7) + . . .  (14) 

where 

1 
fo(7) = ¼(1 - erfc7(1 + 272)) - ~ 7e -n~ , (15) 

The higher order terms can then be found in a straightforward, though laborous, way. We can 
define a non-dimensional excess surface temperature T s by T s = (pog~K)[(laUo) ( T  - To)  so that 

T s = O(X,O)= 2X~(Of/07)o . Note that the non-dimensional streamwise velocity component on 

the surface Us is from (1) given by U s = 1 + T s. (14) then gives, for smallX, 

1 1 

T s = X~'(1.12838 +_ 0.38662 X ~ + 0.33872 X + . . .  ). (16) 

TABLE 2 

Excess surface remperature T s - opposing case 

Numerical Series X solution (from 16)) 

0 
0.04 
0.09 
0.16 
0.25 
0.263 
0.2756 
0.2822 
0.28556 
0.28723 
0.28744 
0.28745 

0.00000 
0.24462 
0.38752 
0.55654 
0.79220 
0.83615 
0.89184 
0.93089 
0.95996 
0.98694 
0.99687 
1.00000 

0.00000 
0.24385 
0.38246 
0.53489 
0.70316 
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The solution given by (14) describes the situation accurately only for small X and to obtain the 

solution for larger values of  X equation (12) was solved numerically. The method used was 

similar to that used by the author [5] and to that described by Wilks [9]. Two integrations were 

performed in each case, with step lengths h in the ~ direction of  0.1 and 0.05 and then 

Richardson's h 2-extrapolation formula (Smith [11 ]) was used to improve the accuracy of  the 

results. The numerical integration started at X = 0, where f can be found from (15), and then 

proceeded in a stepwise manner. In the opposing case the numerical solution terminated at the 

point Xs  = 0.28745 and could not be continued past this point, for the numerical solution 

shows that, as X -+ Xs, Ts -+ 1 and dTs /dx  -+ oo. In this case Us = 1 - T s so that as Ts -+ 1, U s 

0 and at X = Xs a flow reversal is indicated with the boundary layer leaving the surface there. 

Values of  Ts are given in Table 2 together with values of  T s as calculated from (16), and it can 

be seen that there is good agreement only up to X = 0.16, (16) being in error by about 4% 

there. 

TABLE 3 

Excess surface temperature T s - aiding case 

Numerical 
X Series solution 

0 
0.09 
0.16 
0.25 
0.36 
0.49 
0.64 
0.81 
1.00 
1.40 
1.80 
2.20 
2.60 
3.00 
3.80 
4.60 
5.20 
6.00 
8.00 

12.0 
18.0 
25.0 
41.0 
66.0 
89.0 

121 
185 
249 
377 
633 
889 

1401 

0.0000 
0.3106 
0.4046 
0.4950 
0.5824 
0.6671 
0.7494 
0.8295 
0.9076 
1.0464 
1.1622 
1.2628 
1.3525 
1.4338 
1.5778 
1.7036 
1.7890 
1.8936 
2.1207 
2.4828 
2.9001 
3.2842 
3.9513 
4.7093 
5.2522 
5.8683 
6.8377 
7.6020 
8.8052 

10.5644 
11.8947 
13.9307 

0.0000 
0.3129 
0.4112 
0.5099 
0.6110 
0.7166 

1.9475 
2.1667 
2.5195 
2.9294 
3.3084 
3.9695 
4.7231 
5.2637 
5.8800 
6.8451 
7.6081 
8.8099 

10.5678 
11.8974 
13.9326 
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In the aiding case no such difficulty is encountered. However, for large X, equation (12) is 

no longer the appropriate equation to solve and a further transformation of (10) is required. 
Now far downstream of the leading edge free convection will predominate and this suggests 
putting 

2 

= 4X~g(X,~),  where ~" = Y / 2 X  ~. 

Equation (10) then becomes 

_ 810,   03g + g = 8X - -  (17) 
0~ -3 T O~ -2 3 - ~ ]  L 0~" 0~'OX 0X O~ ,z 

with boundary conditions 

32g Og 1 
- ~ J as ~" -* o o .  ( 1 8 )  g = 0 ,  0~.2 - l o n ~ ' = 0 ,  ~ 2X" { 

Equation (17) was then integrated numerically by the same method that was used for (I 2). This 

integration started at X = 1 with the solution as obtained from a numerical integration of (12) 
from X = 0 to X = 1 as starting values and proceeded downstream until the asymptotic values 
were attained to the required accuracy. Values of T s thus obtained are given in Table 3 together 
with values of T s as obtained from (16) and from the asymptotic expansion (as described in the 
next section). It can be seen that (16) is in good agreement with the numerical solution only up 

to about X = 0.25. 

4. Solution for large X - aiding case 

To obtain a solution valid for large X, we start with equation (17). (18) suggests expanding 

g(X,~') in the form 

g(X,¢) = go (~) + X-+gl  (~) + X-kg~ (~') + X-1 g3 (D + . . .  (19) 

The equation for go (~') is 

lit 16  tl _ 8 _ g , 2  
go + ~-gogo 3 0 = 0 (20) 

with boundary conditions 

go (0) = 0, go(0) = -1  go ~ 0 as ~" -+ o o .  (21) 

(primes denote differentiation with respect to ~'). Equation (20) is the constant heat flux free 
convection problem analogous to the isothermal wall problem solved by Cheng and Minko- 

wycz [1]. 
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A numerical integration of (20) gives go'(O) = 0.64809 and a graph of go'  is given in 

Figure 2. The equations for gl and g2 are finear and can be solved in a straightforward way once 

go is known. We find that g l ' ( 0 )  = 0.19864 and g2'(0) --- 0.17707 and graphs of g l '  andg2 '  are 
also given in Figure 2. 

We expect indeterminancy in expansion (19), arising from the asymptotic nature of  the 
solution in the sense described by Stewartson [12]. 

This appears first when we come to consider g3, the term of O(X -~) in the expansion. The 

equation for g3 can be integrated once and using the relevant boundary condition we obtain 

- 1 6  P 8 t 8 r 

g3 + Tgog3 -- "ggo g3 = - gglg2 (22) 

with boundary conditions 

g3 (0) = 0 g3' -+ 0 as ~" ~ ,,~. (23) 

Now, for large ~" (22) becomes, on neglecting exponentially small terms 

" 1 6  ~ t 

g3 +'~'Cog3 = 0 (24) 

where Co = ~. lim~ ~ go (~') = 0.37048, and so any solution of (22) has g3' ~ 0 as ~" -+ ~o. To 

integrate (22) numerically we require g3'(0)  and we choose that solution g'3 which has~-3'(0)= 0 

then from the above g-3' -+ 0 as ~" ~ ~ and so satisfies (23) A graph of~-3' is given in Figure 2. 

Journal o f  Engineering Math., Vol. 14 (1980) 301-313 



310 J. H. Merkin 

But (22) also possesses the complementary function ga = S" go' - 2go which also satisfies (23) 
and so the full solution of (22) is g3 = g-a + )~ ga where ~. is a constant that cannot be 
determined from the asymptotic expansion. It is interesting to note that the term of O(X -1) can 

be determined without the inclusion of a term of O(X -1 log X) as was found necessary by 

Stewartson [ 12]. 
(19) gives, for large X, 

1 1 2 

Ts= 1.29618X~(1 - 0.07924X -~- + 0.27321X -~ - Lg -1 + • • • ). (25) 

Values of T s calculated from the first three terms in (25) are given in Table 3, from which it can 

be seen that the error is about 1% at X = 18 and about 0.05% at X = 377. By comparing the 
values of Ts given by the numerical integration with those given by (25), an estimate for 2, can 

be obtained. We find 2, = 0.19. 

5. So lut ion  near the singularity - opposing case 

When the flow is vertically downwards the buoyancy forces act in a direction opposite to that 
of the flow. The fluid in the boundary layer is thus retarded and we expect the boundary layer 

to separate from the surface at some point downstream of the leading edge. This is indicated by 

the numerical solution terminating at X s =' 0.28745 with T s -+ 1, Us -~ 0 in a singular way. 
From a closer examination of the results given in Table 2 it appears that Us behaves like (Xs - 

X) } near X = Xs. This is suggested by a log-log plot of U s against Xs - X,  as shown in Figure 3, 
where the values of Us close to Xs appear to lie on a straight line of slope approximately 0.5. 

Actually the slope of the line is 0.53 which is about as close to the required value as could be 
expected since difficulties in finding the correct value of the exponent for the behaviour of the 
solution near separation from plots of this kind have been reported previously by Wilks [9] and 

Buckmaster [ 13 ]. 
We now discuss in more detail the behaviour of the solution near X--_ X s in a manner similar 

to that suggested originally by Goldstein [14] for the behaviour of an incompressible boundary 

layer near separation. It is interesting to note that though, as in [14], a (Xs - X )  ~ behaviour 

appears, it comes from a different form of expansion to that given in [t4].  We first transform 
equation (10) by putting ~ = Xs - X, ~t' = (3~/2)}¢(~,r)where r = y / ( ~ ) ~ .  This transformation 

is the only one compatible with (10) and the boundary condition on y = 0 as given by (1 !). 

Equation (10) becomes 

03~,b + 1 ( O ¢ ~  2 02J 3~ I O ~  02q~ OqSO2~b I (26) 
Or - - '7  2- Or ] - ~ Or 2 - 2 Of Or 2 Or a~ar 

with boundary conditions 

~b=0, 02¢ - l o n r = 0 .  (27) 
0T 2 
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As in [14] we relax the outer boundary condition, requiring only that the solution should not 
be exponentially large as r ~ oo. We now expand 43(~, r ) in powers of  ~ ,  namely  

43(~,T) -- 430 (7.) + ~1431 (7.) + ~1432 (7") + ~143 3 (7.) + . . .  ( 2 8 )  

On solving the equations which result from the substitution of (28) into (26) and equating like 
powers of ~, we find 

1 430(7.) = ~ 7.2, (29) 

43, (7.) = A ,  7., (30) 

432( r )=A27 .  - A 2  7.3 , - - f  (31) 

for some constants A 1 and A 2. The equation for 433 is 

433" 1 7 , 7 _ 9 A 3 7 . 2  - ~ r2433" + ~ 7.433 - ~433 = - ~A 1A2 (32) 
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where primes denote differentiation with respect to r. The solution of (32), not exponentially 

large at infinity, which has ¢3 (0) = 0 is 

3 3 2 
¢3(7") = A 3 r  - ~ A I T  

;ol 1 s )l 
- A I A 2 r  s~ + 6 ~ F ( 2 / 3 )  - 2 ; 3  ' 6-  ds (33) 

s. s a/6) is the confluent hypergeometric function not exponentially large at where U(-1;  ~, 

infinity and, from Slater [15], 

1 5 s 3 ) - P(2/3)6 ~ r(-2/3) + O(s) 
u - 2 ; 3  ; f f  = 2x/-~s 2 + P( -7 /6)  

for small s and so the integral in (33) is bounded as T ~ 0. 

Applying the final boundary condition ¢3 "(0) = 0 determines A2 in terms ofA 1, namely A 2 
18 3~{P(2/3)/P(1/3)}2A~ (on simplifying the gamma functions). A3 is a constant which = '5-  

cannot be determined at this stage, but which is found in terms of A I when the term of 

O ( ~ )  is considered. The process is the same as above, and omitting all the details we find 

~8 t F(2/3)4 ( 3 9  108 2 ~ ) A 1 3  ' 
A3 = 12~ F(1/3) 4 2 7 

so upto this stage the solution near ~ = 0 involves only the one arbitrary constant A 1, though 
other terms may appear in the expansion as in the modification of [14] by Stewartson [ 16], but 

in terms of higher order than those considered here. 

Finally we find that near X = X s (~ = O) 

1 1 1 1 

T s = 1 - ( 3 )~ ' (A1  + 1.3575A12~ ~- + 0.0029A13~ ~ + . . . )  (34) 

and the (Xs - X)~ behaviour is recovered. An estimate forA1 can be found from Figure 3, and 

we find that A 1 "" 1.02. 

6. Conclusion 

In order to test the applicability of the above analysis to the geothermal problem we use the 
same data as Cheng [6], namely ~= 1.8 x 10-4/°K, po = 10 a kgm/m a, K =  10 -12 m2,/~ = 2.7 x 
10 -4 kmg/ms, a=6.3  x 10 -7 m2/s. Then with a flow speed Uo = 0.1 cm/hour (the mid value of 

the range suggested in [6]) we find that thr critical value of e = -1  will result from an applied 
temperature difference of about 43 o K between the impermeable surface and the ambient fluid. 

For the constant heat flux problem we can determine the heating rate q which would 

produce separation at 100m from the leading edge with the above flow speed. Taking k = 
2.4W/°Km we find q = 3.6W/m. This heating rate would, in the purely free convection prob- 
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lem, as given by (20),  produce a tempera ture  difference of  about  3 5 ° K  at 100m f rom the 

leading edge. 

The surface tempera tures  found in the above calculations are well  wi thin  the range expec ted  

in this part icular  applicat ion.  This suggests that  careful considerat ion needs to  be given in the 

geothermal  con tex t  to the problem of  f low separat ion which will have the result o f  spreading 

the heat  supplied f rom the impermeable  surface into  a much  wider  region o f  the porous  

medium than the boundary  layer on the surface. 
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